Telegram Group & Telegram Channel
REINFORCE - главное оружие против недифференцируемых задач

Все мы в жизни сталкиваемся с ситуациями, когда есть какая-то функция полезности J, зависящая от параметров Theta. Если можно посчитать производную, то мы в шоколаде - пользуемся градиентным спуском. Но что, если нет?

Рассмотрим такую абстракцию - параметры системы Theta влияют на распределение действий A, а результатом этих действий является J. Если распределение на A не полностью сконцентрировано в одной точке, то существует способ получить несмещённую оценку на градиент J по Theta!

Тут-то и появляется REINFORCE / Policy Gradient. На картинке вывод формулы, сразу же применённый к ситуации, когда действий несколько и они составляют траекторию - tau. Буквой pi обозначается распределение действий A - его и называют стратегией (policy).

Итак, метод в теории рабочий, но дальше он сталкивается с жестокой реальностью - дисперсия оценки градиента безумна, требуется слишком много данных. Во многом RL сводится к тому, чтобы найти способ уменьшить дисперсию оценки. Тот же самый PPO, обычно используемый для RLHF - всего лишь костыль, позволяющий переиспользовать данные, шагая весами Theta несколько раз.

Ситуация с REINFORCE напоминает одну щекотливую тему. Казалось бы - у нас есть окончательное решение недифференцируемого вопроса - просто собирай данные и шагай по этому градиенту. Строго доказано, что достаточно отмасштабировать алгоритм, дать ему больше ресурсов, и он обучит всё, что угодно.

Но реальность печальнее. Можно сколько угодно рассказывать, что масштабирование решит все фундаментальные проблемы, но в конце концов придётся улучшать и сам алгоритм. Готовым кинуть в меня Bitter Lesson-ом предлагаю почитать мой пост про него, там есть о том, как этот урок многие понимают неправильно. Через десятки лет все будут смеяться над тем, что люди хотели с помощью предсказания следующего токена и RL поверх человеческой разметки обучить интеллект, как сейчас над тем, что люди пытались вручную придумывать фичи для компьютерного зрения.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/162
Create:
Last Update:

REINFORCE - главное оружие против недифференцируемых задач

Все мы в жизни сталкиваемся с ситуациями, когда есть какая-то функция полезности J, зависящая от параметров Theta. Если можно посчитать производную, то мы в шоколаде - пользуемся градиентным спуском. Но что, если нет?

Рассмотрим такую абстракцию - параметры системы Theta влияют на распределение действий A, а результатом этих действий является J. Если распределение на A не полностью сконцентрировано в одной точке, то существует способ получить несмещённую оценку на градиент J по Theta!

Тут-то и появляется REINFORCE / Policy Gradient. На картинке вывод формулы, сразу же применённый к ситуации, когда действий несколько и они составляют траекторию - tau. Буквой pi обозначается распределение действий A - его и называют стратегией (policy).

Итак, метод в теории рабочий, но дальше он сталкивается с жестокой реальностью - дисперсия оценки градиента безумна, требуется слишком много данных. Во многом RL сводится к тому, чтобы найти способ уменьшить дисперсию оценки. Тот же самый PPO, обычно используемый для RLHF - всего лишь костыль, позволяющий переиспользовать данные, шагая весами Theta несколько раз.

Ситуация с REINFORCE напоминает одну щекотливую тему. Казалось бы - у нас есть окончательное решение недифференцируемого вопроса - просто собирай данные и шагай по этому градиенту. Строго доказано, что достаточно отмасштабировать алгоритм, дать ему больше ресурсов, и он обучит всё, что угодно.

Но реальность печальнее. Можно сколько угодно рассказывать, что масштабирование решит все фундаментальные проблемы, но в конце концов придётся улучшать и сам алгоритм. Готовым кинуть в меня Bitter Lesson-ом предлагаю почитать мой пост про него, там есть о том, как этот урок многие понимают неправильно. Через десятки лет все будут смеяться над тем, что люди хотели с помощью предсказания следующего токена и RL поверх человеческой разметки обучить интеллект, как сейчас над тем, что люди пытались вручную придумывать фичи для компьютерного зрения.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/162

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Pinterest (PINS) Stock Sinks As Market Gains

Pinterest (PINS) closed at $71.75 in the latest trading session, marking a -0.18% move from the prior day. This change lagged the S&P 500's daily gain of 0.1%. Meanwhile, the Dow gained 0.9%, and the Nasdaq, a tech-heavy index, lost 0.59%. Heading into today, shares of the digital pinboard and shopping tool company had lost 17.41% over the past month, lagging the Computer and Technology sector's loss of 5.38% and the S&P 500's gain of 0.71% in that time. Investors will be hoping for strength from PINS as it approaches its next earnings release. The company is expected to report EPS of $0.07, up 170% from the prior-year quarter. Our most recent consensus estimate is calling for quarterly revenue of $467.87 million, up 72.05% from the year-ago period.

Start with a fresh view of investing strategy. The combination of risks and fads this quarter looks to be topping. That means the future is ready to move in.Likely, there will not be a wholesale shift. Company actions will aim to benefit from economic growth, inflationary pressures and a return of market-determined interest rates. In turn, all of that should drive the stock market and investment returns higher.

Knowledge Accumulator from no


Telegram Knowledge Accumulator
FROM USA